

7. Netzwerktreffen keeno II:

Kläranlagen

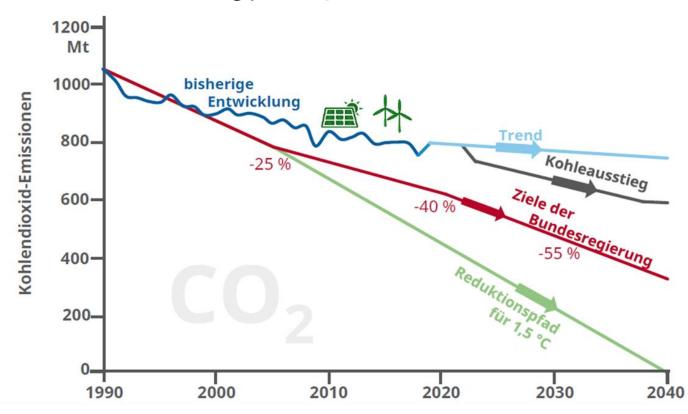
vom Energieverbraucher zum Energieerzeuger

Klimaschutz bei der Abwasserbehandlung

09. März 2022, Ahorntal

Dipl.-Ing. Matthias Scherner, Energieagentur Nordbayern

Einleitung



- Wie groß ist die Herausforderung?
- Was haben wir bisher erreicht?
- Führen unsere bisherigen Aktivitäten zum Erfolg?

Zur Zielerreichung wird das **sechsfache**

Tempo bei der Reduzierung der Treibhausgasemissionen benötigt.

Pariser Klimagipfel 2015

Quelle: Prof. Dr. Volker Quasching: Klimaschutz in der Sackgasse – Bedrohung und Wege in eine neue Energiewelt

ENERGIEAGENTUR nordbayern

Die Wasserwirtschaft spielt in mehrfacher Hinsicht eine wichtige Rolle bei der Erschließung erneuerbarer Energiequellen und ist damit Teil eines zukunftsfähigen, regionalen Energie- und Stoffstrommanagements

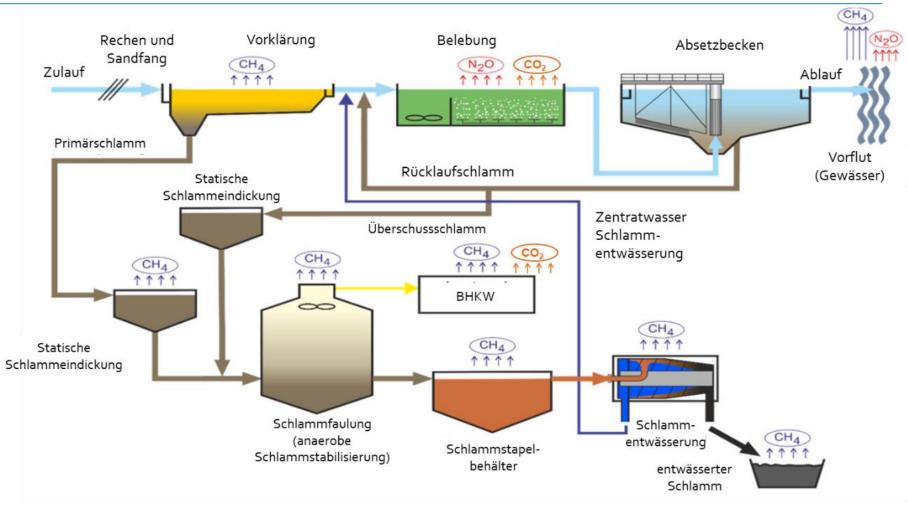
Quelle: Richtlinien zur Förderung von Forschungsvorhaben auf dem Gebiet "Zukunftsfähige Technologien und Konzepte für eine energieeffiziente und ressourcenschonende Wasserwirtschaft" (ERWAS) des Förderschwerpunktes "Nachhaltiges Wassermanagement - NaWaM" im Rahmen des Förderprogramms "Forschung für nachhaltige Entwicklungen - FONA,"

(Förderaufruf ERWAS des BMBF 2013)

Quelle: https://bmbf.nawam-erwas.de/de/

Kläranlagen der Zukunft

Ziele

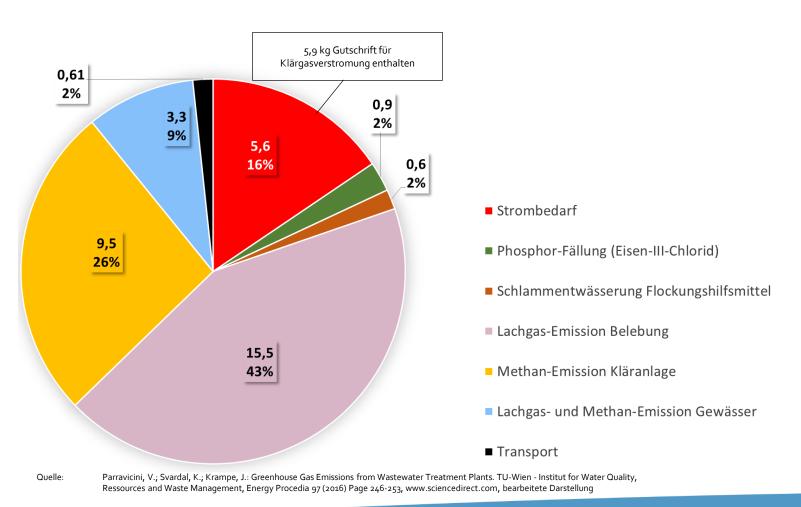


- Gewässerschutz bestmöglich gereinigtes Wasser
- Emissionen der Abwasserreinigung gelangen nicht als Treibhausgas in die Atmosphäre.
- Kohlenstofffracht wird bestmöglich für die Energieversorgung genutzt.
- Kläranlagen
 - versorgen sich zu 100% selbst mit Strom und Wärme,
 - stellen überschüssige Energie anderen Sektoren zur Verfügung und
 - leisten einen Betrag zum Lastmanagement im Stromnetz.
- Kläranlagen sind ein Baustein der nachhaltigen ökologischen Energieversorgung.

Treibhausgasemission aus dem Abwasserreinigungsprozess

Abwasserreinigung mit Schlammfaulung

Quelle:


Parravicini, V.; Svardal, K.; Krampe, J.: Greenhouse Gas Emissions from Wastewater Treatment Plants. TU-Wien - Institut for Water Quality, Ressources and Waste Management, Energy Procedia 97 (2016) Page 246-253, www.sciencedirect.com, bearbeitete Darstellung

Treibhausgasemissionen

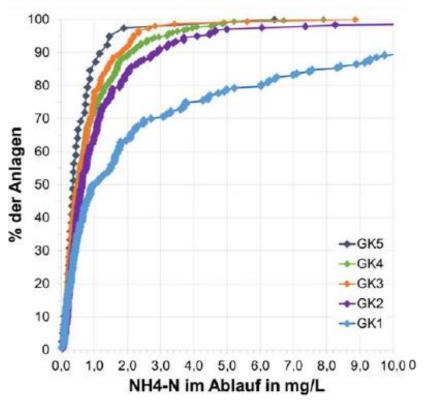
Verteilung der Emissionen im Abwasserreinigungsprozess (Studie der TU-Wien)

Kläranlagen mit Schlammfaulung

- wenig Messdaten zu Emissionen der Abwasserreinigung vorhanden
 - Lachgas ,
 - und Methan
 - CO2

		GWP bezogen auf 20 Jahre	Verweilzeit in der Atmosphäre [Jahre]
Kohlenstoffdioxid	CO ₂	1	50 - 200
Methan	CH ₄	84	12
Distickstoffmonoxid (Lachgas)	N ₂ O	264	114

Quelle: G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque,
 D. Lee, B. Mendoza, T. Nalajima, A. Robock, G. Stephens, T. Takemura, H. Zhang et al.:
 Climate Change 2013: The Physical Science Basis. Working Group I contribution to the IPCC Fifth Assessment Report. Hrsg.: Intergovernmental Panel on Climate Change. 30. September 2013,
 Chapter 8: Anthropogenic and Natural Radiative Forcing, S. Table 8.1.A, Seiten 8–88 bis 8–99 (climatechange2013.org; abgerufen am 03. 03 2019)


Treibhausgasemissionen

Emissionen reduzieren – Handlungsfelder

Lachgas- und Methan-Emissionen in den Gewässern

- Kohlenstoff- und Stickstoffeintrag in Gewässer reduzieren
- mehr Kohlenstoff und Stickstoff aus dem Abwasser entfernen

Quelle: 44, Leistungsvergleich der kommunalen Kläranlagen Baden-Württemberg – Landesergebnisse (2027) © DWA 2018, Landesverband Baden-Württemberg, https://www.dwa-bw.deffiles/_media/content/PDFs/LV_Baden-Wuerttemberg/Homepage/BW-Dokumente/Homepage 2013/Nachbarschaften/Schwentner_Leistungsvergleich2017 Manuskript (25,04,18).pdf, aufgerufen am 14-03,2019

Vorteile großer Kläranlagen

- mehr N und C wird aus dem Abwasser entfernt
- energieeffizienter
- aus organischer Fracht wird Klärgas erzeugt

Abwasserüberleitung zu größeren Kläranlagen

- = gleichzeitig besserer Klima- und Gewässerschutz
- = volkswirtschaftlich nachhaltig

09.03.2022

Kläranlage der Zukunft

Aufgabenportfolio im Zusammenhang mit der kommunalen Abwasserreinigung

- Lachgas- und Methan-Emissionen in den Gewässern
 - Kohlenstoff- und Stickstoffeintrag in Gewässer reduzieren
 - mehr Kohlenstoff und Stickstoff aus dem Abwasser entfernen
- Lachgas- und Methan-Emissionen der Abwasserreinigung
 - Lachgas-Emission der Belebung reduzieren
 - Methan-Emission unterschiedlicher Quellen reduzieren

- Nitrifikation bzw. Denitrifikation sind abhängig von
 - Nitritbildung,
 - Sauerstoff- und Stickstoffkonzentration (Stoßbelastungen vermeiden),
 - Kohlenstoffquelle und
 - betrieblichen Einstelllungen
- weitere Handlungsoptionen
 - Deammonifikation
 - Bakterium "Comammox"
 - Emissionen absaugen und behandeln
 -

Treibhausgasemissionen

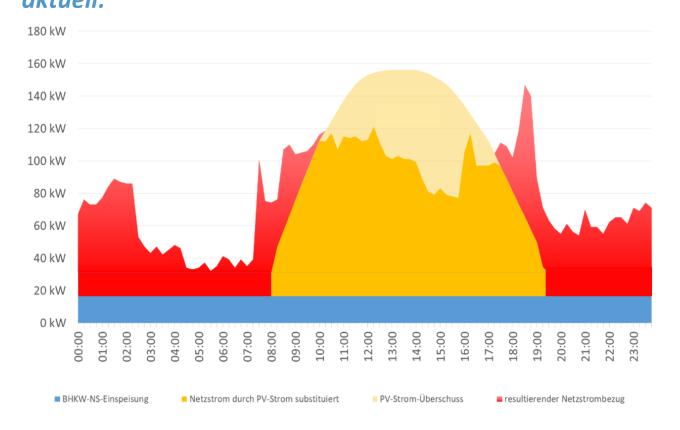
Emissionen reduzieren – Handlungsfelder

- Lachgas- und Methan-Emissionen in den Gewässern
 - Kohlenstoff- und Stickstoffeintrag in Gewässer reduzieren
 - mehr Kohlenstoff und Stickstoff aus dem Abwasser entfernen
- Lachgas- und Methan-Emissionen der Abwasserreinigung
 - Lachgas-Emission der Belebung reduzieren
 - Methan-Emission unterschiedlicher Quellen reduzieren
- Energiebedarf der Abwasserreinigung
 - Energiebedarf reduzieren
 - Erneuerbare Energie (EE)
 - EE speichern
 - Synergieeffekte zwischen unterschiedlichen Technologien und Sektoren nutzen

Ziele der Energiewende	Status	Abschluss
Ausstieg aus der Kohle	beschlossen	bis 2038
80% der Stromerzeugung aus Erneuerbaren Energie	in Umsetzung	bis 2050
Unabhängigkeit von (russischen) fossilen Energie-Importen	in Diskussion	schnellst möglich

These: 2040 ist die Stromversorgung der Abwasserreinigung zu 100% aus EE umsetzbar.

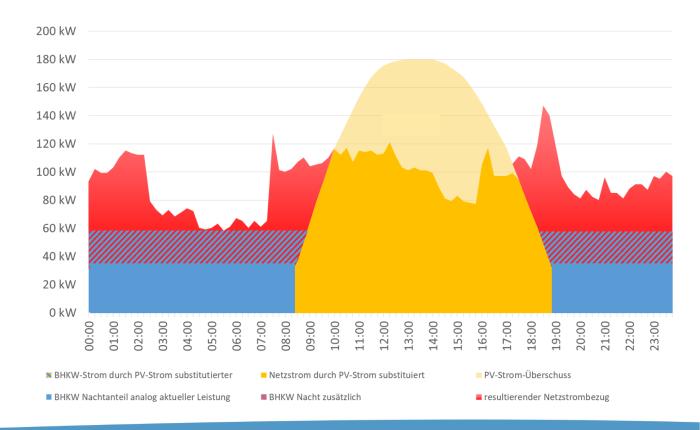
Der Fokus liegt auf Energie-Speicherung und Emissionsvermeidung bei der Abwasserreinigung?


Planungsszenario 2040

Stromversorgung über Erneuerbare Energien (EE)

 vor Ort verfügbare Sonnen- und Windenergie direkt nutzen

Konzepte Klärgasnutzung in Verbindung mit Photovoltaik-Anlagen aktuell:


Planungsszenario 2040

Stromversorgung über Erneuerbare Energien (EE)

- vor Ort verfügbare Sonnen- und Windenergie direkt nutzen
- steuerbare EE nutzen, wenn keine Sonnen- und Windenergie zur Verfügung steht
 - Klär- und Biogas
 - Klärschlamm
 - Biomasse

Konzepte Klärgasnutzung in Verbindung mit Photovoltaik-Anlagen **Zukunft:**

Planungsszenario 2040

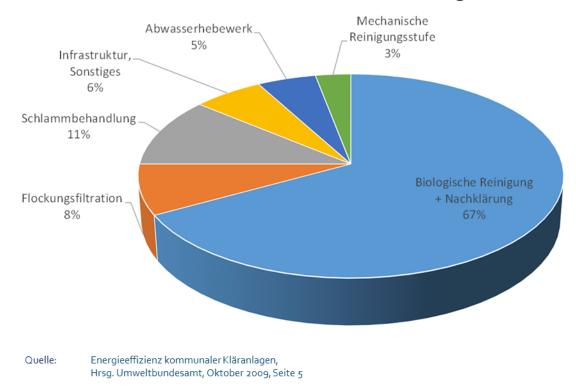
Stromversorgung über Erneuerbare Energien (EE)

- vor Ort verfügbare Sonnen- und Windenergie direkt nutzen
- steuerbare EE nutzen, wenn keine Sonnen- und Windenergie zur Verfügung steht
 - Klär- und Biogas
 - Klärschlamm
 - Biomasse
- Speicherkonzept für regional erzeugte
 EE und im Stromnetz verfügbare EE

... Kläranlagen als Flexibilitätsdienstleister!

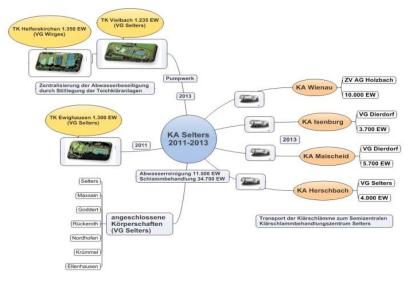
Quelle: https://bmbf.nawam-erwas.de/de/

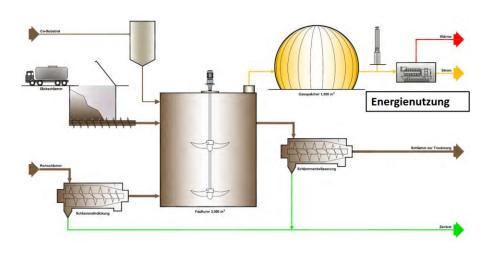
Effizienzpotential Kläranlage


Synergieeffekte zwischen Stromspeicherung und Abwasserreinigung

SynergieeffekteWasserstoff als Energiespeicher

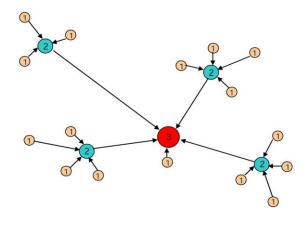
- Abfallprodukt der Elektrolyse ist Reinsauerstoff
- Sauerstoff kann anstatt Luft in der Belebung eingesetzt werden
- Reinsauerstoff hat 78 % weniger Volumen als Luft
- 78 % weniger Volumen muss von den Gebläsen in die Belebung gefördert werden
 = erhebliche Energieeinsparung


Stromverbrauch einer Kläranlage


Effizienzpotential regional

Beispiele Kläranlagen- und Klärschlammverwertungskonzepte

zentrale Klärschlammfaulung und -verwertung Beispiel ZWAR Rügen



Quelle: Franck, J.: Praxisbeispiel dezentrale thermische Klärschlammbehandlung.

Seminar Dr. Borm - Dr. Ermel: Dezentrale Klärschlammbehandlung 3. März 2016

https://bornermel.eu/files/bornermel/uploads/.../Joern_Franck_Therm_KS_Rügen.pdf

oder kombiniert (Strukturkonzept)

ENERGIEAGENTUR

nordbayern

Quelle: Bayerisches Landesamt für Umwelt:

Klärschlammentsorgung in Bayern – Planungshilfe für

Kommunen, Augsburg, Mai 2011

Über die Kommunalrichtlinie gefördert:

- Bau von Vorklärungen auf kleinen Kläranlagen und
- Klärschlammannahmen auf größeren Anlagen

Quelle: Siekmann, K.; Jakobs, J.: Schlammfaulung mit

Faulgasverwertung auf kleinen Kläranlagen. Vortrag

auf der DWA-Klärschlamm Symposium 2015

Effizienzpotential regional

Beispiele Kläranlagen- und Klärschlammverwertungskonzepte

Abwasserzweckverband Linz-Unkel, (Kläranlage 28.800 EW)

- 2008 Studie zur Nachhaltigen Ressourcennutzung des Abwassers und Klärschlammentsorgung
- 2011 Umstellung auf Schlammfaulung
- 2015 Klärschlammverwertung mit Fremdschlammannahme

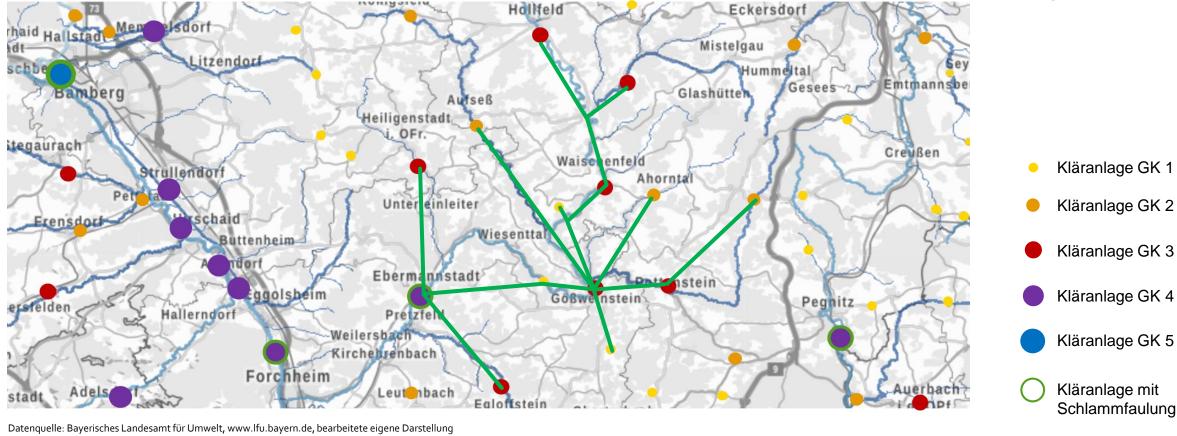
ZWAR Rügen (ca. 100.000 EW)

- 2015-2016 Bau und Inbetriebnahme der zentralen Schlammfaulung
- 2018 Inbetriebnahme Klärschlammtrocknung und Monoverbrennung

Haßfurt

Forschungsprojekt Integrierte Klärschlamm- und Klärgasverwertung "Verklär²" (03.2021 – 08.2024) zur umweltgerechten dezentralen energetischen Verwertung von Klärschlamm in einer Wirbelbefeuerung für kommunale Kläranlagen der Größenklasse IV a (10.000 – 50.000 EW)

Kleine Klärschlammverwertungsanlagen ab 30.000 EW am Markt verfügbar

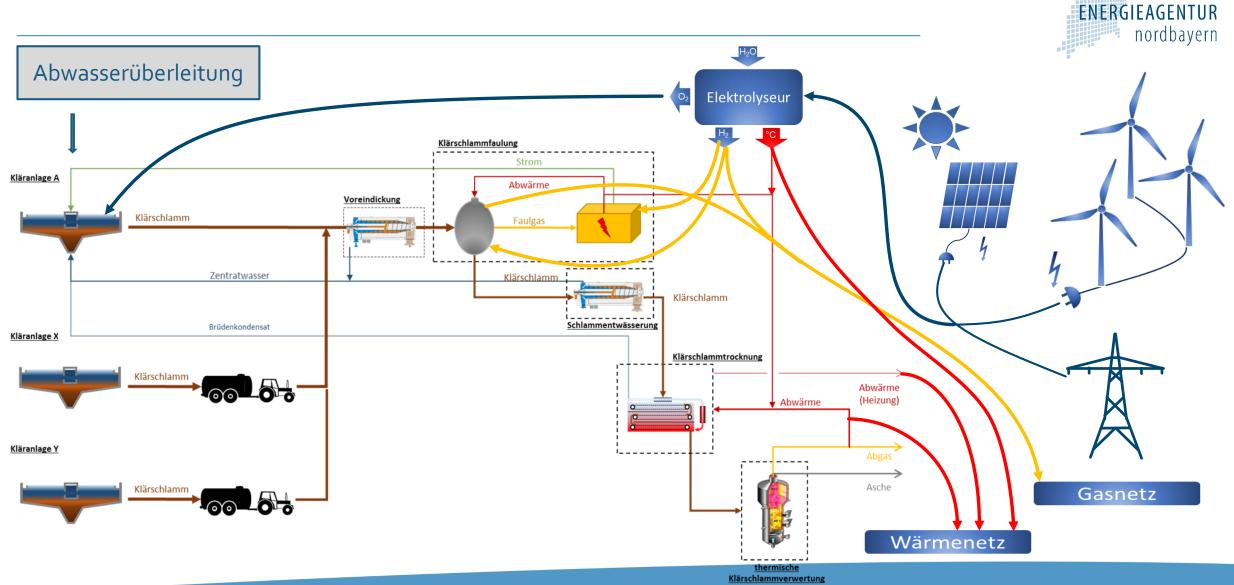

nbH, www.pyreg.de/p500-klaerschlamm, aufgerufen am 24.03.2019

Effizienzpotential regional

Abwasserüberleitung in große Kläranlagen

14 Kläranlagen kumulierte Ausbaugröße = 83.720 EW

RZWas 2021



- erstmaliger Bau von Verbundkanälen anstelle der Sanierung von Kläranlagen
 - min. 50% u. max. 90% der Ausgaben
 - 125 EUR pro Meter Abwasserkanal
 - aufnehmender Zweckverband erhält 40 EUR je aufgenommenem Einwohner (max. 100.000 EUR), zzgl. Zuwendung die die aufgenommene Einrichtung für Sanierungsmaßnahmen erhalten würde
- Erstellung von Sanierungs- und Strukturkonzepten
 - max. 70% der Ausgaben nach Ausführung
 - max. 50.000 EUR
 - 20 EUR je aufgenommenem Einwohner

- Projektträger:
- Wasserwirtschaftsamt Kronach
- Telefon 09261 502-0
- E-Mail: poststelle(at)wwa-kc.bayern.de
- Wasserwirtschaftsamt Hof
- Telefon 09281 891-0
- E-Mail: poststelle@wwa-ho.bayern.de

Regionales Kläranlagenkonzept mit Sektorenkopplung

"

ENERGIEAGENTUR nordbayern

Der unverzügliche Wechsel zu erneuerbaren Energien ist keine Last, sondern die größte greifbare soziale und wirtschaftliche Zukunftschance.

Hermann Scheer (1944-2010)

"

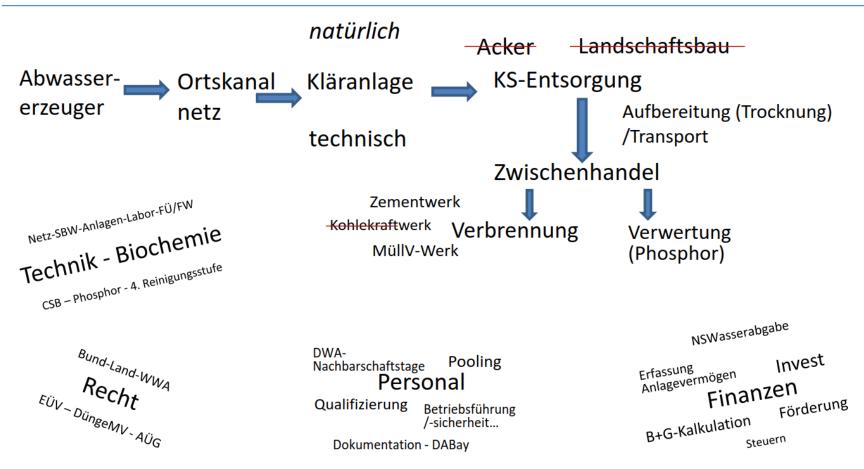
Energieagentur Nordbayern GmbH

Dipl.-Ing. Matthias Scherner

Geschäftsstelle Nürnberg Fürther Straße 244a 90429 Nürnberg

Tel.:

0911/994396-0


Fax: 0911 / 99 43 96 - 6 Mobil: 0152 / 32 00 72 40

Email: scherner@ea-nb.de

Kläranlage der Zukunft

Aufgabenportfolio im Zusammenhang mit der kommunalen Abwasserreinigung

These: Das muss nicht jede
Gemeinde selber oder
alleine machen.

Synergien erkennen und gemeinsam strategisch handeln?

- Gedanken von Hr. Seifert,
 - 1. Bürgermeister Stadt Scheinfeld und Sprecher ARGE Klärschlammentsorgung im Landkreis Neustadt/Aisch-Bad Windsheim vorgetragen beim Cluster-Forum Energietechnik "Klärschlammverwertung Anforderungen, Lösungen, Praxis" am 28.02.2019 in Amberg an der OTH Amberg-Weiden